metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Yan Wang,^{a,b} Xiao-Tao Deng^a and Cheng-Gang Wang^a*

^aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, and ^bChemistry and Biology Department, West Anhui University, Liuan, Anhui 237000, People's Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.031 wR factor = 0.090 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(acetato- $\kappa^2 O, O'$)diaquacopper(II)

A new monomeric copper acetate complex, $[Cu(C_2H_3O_2)_2(H_2O)_2]$, was obtained unexpectedly by the reaction of $Cu_2(CO_3)_2(OH)_2 \cdot xH_2O$, acetonitrile, ammonia and water under hydrothermal conditions. The structure contains a discrete centrosymmetric diacetatodiaquacopper(II) complex and the Cu^{II} atom is coordinated by four O atoms from two acetate anions and two water molecules, giving a distorted octahedral geometry.

Comment

Dimeric copper acetate monohydrate tetra- μ -acetatodiaquadicopper(II) has been reported (van Niekerk & Schoening, 1953; de Meester *et al.*, 1973). We obtained a new monomeric copper acetate complex, (I), by hydrothermal reaction of Cu₂(CO₃)₂(OH)₂·*x*H₂O, acetonitrile, ammonia and H₂O. Under such reaction conditions, acetonitrile could be hydrolysed to form the acetate anion, which is coordinated to the Cu atom.

The Cu^{II} atom, lying on a centre of symmetry, is coordinated by four acetate O atoms of [Cu1-O2 = 2.0051 (17) Å and Cu1-O3 = 2.682 (2) Å], and two water molecules [Cu1-O1 =1.978 (3) Å], giving an elongated octahedral coordination geometry (Fig. 1). This is a typical instance of the Jahn-Teller

© 2006 International Union of Crystallography All rights reserved Received 24 October 2006 Accepted 18 November 2006 effect. The O3-C1 distance [1.237 (3) Å] is significantly shorter than the O2-C1 distance [1.278 (3) Å], suggesting that the carboxylate group is not a completely delocalized system. The molecules are firmly linked by hydrogen bonds to form a three-dimensional network (Fig. 2).

Experimental

A mixture of $Cu_2(CO_3)_2(OH)_2 \cdot xH_2O$ (0.5 g), acetonitrile (5 ml), ammonia (25%, 5 ml) and H_2O (5 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 453 K for 72 h. Blue block-shaped crystals of the title complex were obtained.

Z = 2

 $D_x = 1.803 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 2.71 \text{ mm}^-$

T = 292 (2) K

Block, blue

Crystal data

 $\begin{bmatrix} Cu(C_2H_3O_2)_2(H_2O)_2 \end{bmatrix} \\ M_r = 217.66 \\ Monoclinic, P2_1/c \\ a = 5.4731 (7) Å \\ b = 10.1990 (13) Å \\ c = 7.5187 (10) Å \\ \beta = 107.230 (2)^{\circ} \\ V = 400.86 (9) Å^3 \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.482, T_{\max} = 0.648$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.090$ S = 1.15907 reflections 59 parameters H atoms treated by a mixture of independent and constrained refinement 2290 measured reflections 907 independent reflections 825 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.5^{\circ}$

 $0.30 \times 0.20 \times 0.16 \ \mathrm{mm}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0509P)^2 \\ &+ 0.2477P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.70 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.78 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline O1 - H1A \cdots O3^{i} \\ O1 - H1B \cdots O2^{ii} \end{array}$	1.01 (3) 0.99 (4)	2.08 (3) 2.13 (4)	3.015 (3) 3.108 (3)	154 (3) 168 (3)
	()	()	()	()

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, -y, -z + 2.

Methyl H atoms were placed in geometrically idealized positions (C-H = 0.96 Å) and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$. Water H atoms were located in a difference map and their positional parameters were refined, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work is supported by the Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology (No. RCT2004011).

References

Bruker (2000). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575–2576.

van Niekerk, J. N. & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.